A Developed New Algorithm for Evaluating Adomian Polynomials
نویسندگان
چکیده
Adomian polynomials (AP’s) are expressed in terms of new objects called reduced polynomials (RP’s). These new objects, which carry two subscripts, are independent of the form of the nonlinear operator. Apart from the well-known two properties of AP’s, curiously enough no further properties are discussed in the literature. We derive and discuss in full detail the properties of the RP’s and AP’s. We focus on the case where the nonlinear operator depends on one variable and construct the most general analytical expressions of the RP’s for small values of the difference of their subscripts. It is shown that each RP depends on a number of functions equal to the difference of its subscripts plus one. These new properties lead to implement a dramatically simple and compact Mathematica program for the derivation of individual RP’s and AP’s in their general forms and provide useful hints for elegant hand calculations of AP’s. Application of the program is considered.
منابع مشابه
The Degenerate Form of the Adomian Polynomials in the Power Series Method for Nonlinear Ordinary Differential Equations
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian pol...
متن کاملReduced Polynomials and Their Generation in Adomian Decomposition Methods
Adomian polynomials are constituted of reduced polynomials and derivatives of nonlinear operator. The reduced polynomials are independent of the form of the nonlinear operator. A recursive algorithm of the reduced polynomials is discovered and its symbolic implementation by the software Mathematica is given. As a result, a new and convenient algorithm for the Adomian polynomials is obtained.
متن کاملNew Iterative Method Based on Laplace Decomposition Algorithm
Since 2001, Laplace decomposition algorithm (LDA) has been one of the reliable mathematical methods for obtaining exact or numerical approximation solutions for a wide range of nonlinear problems. The Laplace decomposition algorithm was developed by Khuri in [2] to solve a class of nonlinear differential equations. The basic idea in Laplace decomposition algorithm, which is a combined form of t...
متن کاملNumerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method
In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.
متن کاملA new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition method
In this article, a new method is introduced to give approximate solution to Van der Pol equation. The proposed method is based on the combination of two different methods, the spectral Adomian decomposition method (SADM) and piecewise method, called the piecewise Adomian decomposition method (PSADM). The numerical results obtained from the proposed method show that this method is an...
متن کامل